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Abstract. The mean-field renormalisation group method is used to study the critical 
temperature of the three-state Potts antiferromagnet in 3~ lattices, as well as the three-state 
Potts model on the square lattice with ferromagnetic (along x)  and antiferromagnetic 
(along y )  interactions, and its quantum version, the I D  Potts antiferromagnet in a transverse 
field. Comparison is made with other results. 

1. Introduction 

The antiferromagnetic q-state Potts model on a bipartite lattice is an example of a 
system with a finite residual entropy. Phase transitions in systems with infinitely 
degenerate ground states have been the subject of much investigation, due to the variety 
of low-temperature orderings which can be envisaged. Berker and Kadanoff [ l ]  first 
suggested the possibility, in these systems, of a low-temperature critical phase with 
algebraically decaying correlations. The first case to be studied was the three-state 
Potts antiferromagnet on the square lattice, where indications for this sort of behaviour 
at non-zero temperature were found by Grest and Banavar [2]. Their interpretation 
of the Monte Carlo data has since been criticised [3-71 and it is now established [8] 
that the system exhibits a transition only at zero temperature where, in fact, due to its 
equivalence to the square-ice model, power-law decay of correlations occurs [93. The 
scaling argument of Berker and Kadanoff is, however, not sufficient [7] to rule out 
other possibilities of low-temperature behaviour, and in fact a continuous phase 
transition into a phase with long-range order has been found in d = 3 for q = 3 and 
q = 4 [lo-121. Adding to the evidence obtained by Monte Carlo techniques, the exact 
solution of this model on a Bethe lattice [ 131 confirms the existence of a phase transition 
of the usual second-order kind (which occurs at non-zero temperature for high enough 
coordination number). In this case, the nature of the ordering is further elucidated 
by the consideration of an external field. 

In what concerns the ordering temperature T,, the only prediction to which the 
Monte Carlo estimates can be compared is the one obtained by mean-field approxima- 
tion [12]. In this work we apply the mean-field renormalisation group technique 
( MFRG), first developed by Indekeu et a1 [ 141, which presents two main advantages: 
it gives a better approximation than mean field for the phase diagram, and it applies 
easily to d = 3. This method has already been applied to the Potts ferromagnet in a 
transverse field [15], and to some frustrated systems like the triangular Ising antifer- 
romagnet [ 161; even at low temperatures, or in the case of first-order phase transitions, 
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when the assumption implied by MFRG is less justified, the predicted critical line is 
found to be in reasonable agreement with other calculations. Our results for the 
three-state Potts antiferromagnet are presented in 0 2, where comparison is also made 
with available Monte Carlo data. As for the critical behaviour, much information is 
still missing. An &-expansion calculation done by Banavar et a1 [ l l ]  has led to the 
argument that the three-state Potts antiferromagnet is in the same universality class as 
the xy’ model. The capability of the MFRG method to predict critical exponents is 
poorer than for estimating critical couplings, at least when small clusters are used, as 
in the present calculation; the estimate obtained for the critical exponent v is also 
included in § 2. 

Another related model with an infinitely degenerate ground state is a two- 
dimensional Potts model with ferromagnetic (J,)  and antiferromagnetic (J,.) interac- 
tions in the two respective directions of a square lattice. Kinzel et a1 [17] have given 
an argument showing that an ordered phase (characterised by a ferromagnetic correla- 
tion between alternating ferromagnetic chains) can exist in this model, and obtained 
an expression for its critical point as a function of (Y = - J , / J , .  These authors have 
also carried out a Monte Carlo simulation of the same model, which suggests, however, 
that one may be in the presence of an unconventional infinite-order transition of the 
sort found in the square-lattice Potts model with antiferromagnetic nearest-neighbour 
and ferromagnetic next-nearest-neighbour interactions [2,3]. In § 3 we again make 
use of the MFRG method to obtain an estimate of the critical temperature dependence 
on a, and to compare it with the results of Kinzel et al. 

In § 4, we study the one-dimensional Potts antiferromagnet in a transverse field r, 
which, at T = 0, constitutes [ 181 the quantum version of the two-dimensional Potts 
model with ferromagnetic ( J , )  and antiferromagnetic ( Jy ) interactions. This quantum 
model has been investigated by finite-size scaling and phenomenological renormalisa- 
tion by Herrmann et al, who found indications of a massless low-temperature behaviour 
with an essential singularity for values of A = -T/J, below a certain value A,.  We 
obtain an estimate for the value of A at which the zero-temperature transition occurs, 
which is very close to the one found by those authors. In fact, the method of MFRG 

is closely related to phenomenological renormalisation; it is nevertheless remarkable 
that the same result can be achieved by a comparison of just one- and two-spin clusters. 
An estimate for the critical exponent of the classical equivalent model is also included 
in § 4; the result obtained within this approximation gives an indication but does not 
allow a definitive conclusion about the nature of the singularity discussed by Herrmann 
et al. 

We conclude in § 5 with a brief discussion of the results. 

2. Three-state Potts antiferromagnet 

We consider two interpenetrating sublattices, denoted by A and B, with each A Potts 
spin being surrounded by z B Potts spins. The ordering scheme suggested by Monte 
Carlo simulations is the so-called broken-sublattice symmetry ( BSS) which consists of 
having one of the states, say 1, on sublattice A and the other two states distributed 
randomly on sublattice B. A global order parameter describing this type of ordering 
may be defined [12]: 

3 

H (  T )  = f c IPJA) - P r ( B ) /  
r = l  
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where P, is the average population per site of state r on the given sublattice. Alterna- 
tively we can use the projection operator onto state k, Pk ,  and define the order parameter 
as ( P i ) - ( P L ) ,  where P i ( B )  refers to sublattice A ( B )  and ( ) means a thermodynamical 
average. 

Now the main idea of MFRG is to compare the behaviour of two clusters of different 
size; the interactions within the clusters are treated exactly and the effect of surrounding 
spins is simulated by a mean field which is supposed to scale in the same way as the 
ordering parameter of the cluster. 

We start by considering the Hamiltonian for one Potts spin located on site i 
belonging to sublattice A: 

xiA)= -zJ’[P:AClB + +( P f A  + P$)(  1 - C I B ) ]  

where J’ is the antiferromagnetic coupling and CIS denotes the mean-field probability 
for state 1 in sublattice B. 

We then have 

We have an analogous equation for one Potts spin located on site j belonging to 
sublattice B :  

In the disordered phase, (P2A)I = (P,,), =+, in which case equations (2.1) and (2.2) 
are trivially satisfied. The onset of antiferromagnetic order corresponds to ( P $ ) ,  being 
different from (P;B)l .  We then write CIA = :+ {Al ,  CIB = - +Al and, assuming A, to 
be small (which is true in the vicinity of a second-order transition), we get 

(2.3) MI = (PIA), - ( P;B)~  = - f ZK ’A1 . 
We consider now the Hamiltonian for a two-spin cluster 

2 1 1  = -J C P:AP;B-(Z - 1)J[P:ACIIB++(P:I\+ P ; A ) ( l -  C l I B ) +  P ~ B C I I A  
k 

+ 4 ( P : B +  piB)(l - C I I A ) ] ~  

Writing CllA = ! + + A l l ,  CIIB =;-fa,,, we get 

1 
6 + 3  e K ’  

ml ,= (P :A-P :B) I I= -3 (~ -  1)KAll- (2.4) 

The main idea behind MFRG is that AI and A l l  must scale like mI and mI1. Imposing 
this scaling relation for A I  and A l l ,  we arrive at the renormalisation recursion relation 
for K ’  and K .  The fixed-point equation associated with it is 

f z = ( z - 1 )/ (2 + e “c) . (2 .5 )  

The simple cubic lattice is a bipartite with z = 6; in this case (2.5) gives - 1 /  K ,  = 1.44, 
to be compared with 2.0 from mean field and 1.28 from Monte Carlo [12]. For z = 8, 
which describes the BCC lattice, we get -1/ K, = 2.12, whereas the Monte Carlo data 
of Banavar et a1 [l l]  give an estimate of 1.8. 
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According to (2.5), T, = 0 for z = 3, whereas it is known that T, = 0 already [19] 
for z = 4, i.e. the square lattice. This disagreement is not surprising as we cannot expect 
very good results from MFRG at low temperatures, when the relevant correlations are 
not appropriately accounted for by the assumptions which led to equations (2.3) or (2.4). 

The temperature range for which the correlations are almost trivial decreases with 
increasing cluster size. We have performed a similar calculation involving the com- 
parison of two- and four-spin clusters. Equation (2.5) is then replaced by 

4 e2Kc+4 eKc+ 10 - 2 
(2-213 e4~c+36 e2~.+24 eKc+ I s - ( Z - ’ ) 3 ( e ~ c + 2 ) *  

This gives - 1 / K , ( z = 6 ) =  1.40 and -1/K,+O when z+3.5, which constitutes an 
improvement on the previous result, but still misses the exact result T,( z = 4) = 0. 

Critical indices can be obtained by linearisation of the renormalisation recursion 
relation around a fixed point. We have calculated the critical exponent v, defined here 
as dK’/dK =2’””’. For the simple cubic lattice we get dMFRG)= 1.7. This is not a 
good estimate if one compares it with the value v = f predicted for the 3~ X Y  model 
[20]. We recall however that, within a similar approximation, the value obtained for 
the 3~ Ising model is v$zG) = 1.5 [15]; so v(MFRG)> v ~ ~ z G ’ ,  which is still compatible 
with the argument of Banavar et a1 [ l l ] .  

As we have said, the method gives better results for the critical couplings than for 
the critical exponents; a comparable accuracy in the latter can only be achieved by 
the use of considerably bigger clusters. 

3. ZD Potts model with ferromagnetic ( J x )  and antiferromagnetic (J,) interactions 

We now continue by considering the two-dimensional Potts model with ferromagnetic 
interactions along the x axis and antiferromagnetic interactions along the y axis. The 
square lattice is seen here as a sequence of alternating A and B chains (figure 1). 

- - -  A 

1 2  - - _  B 

A 
3 4  

Figure 1. Two-site clusters on A and B chains. 

For the one-site clusters, we can use (2.5) with 2(K:,-K:) instead of zK’. We 
then consider a two-site cluster of the type indicated in figure 1, and write its Hamil- 
tonian: 

x!fl = --!x c p:Bp:B - ( J x c l ,  B + 2JycllA)(p: B + p i E l  - [ iJx(  1 - cI1 E )  + $!P( 1 - C I I A ) ]  

x ( P ; B  + P:B + P:B + P : B ) .  

The Hamiltonian %‘if’ for a two-spin cluster belonging to A can be written 
analogously. 
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In the vicinity of the transition one then gets 

The fixed-point equation obtained by imposing the scaling relation implied by the 
renormalisation is now 

2 e K \ + 1  
2( K ,  - K,  ) = ( K ,  - 2K, ) ~. e K \ + 2  

In figure 2 we plot T, as a function of LY = - J y / J x .  The curve which corresponds 
to the relation (1 +eKz)(l - eK$)  =3 ,  predicted by Kinzel et a1 [17], is also drawn for 
comparison. 

4. I D  Potts antiferromagnet in a transverse field 

We now apply the MFRG method to the one-dimensional Potts antiferromagnet in a 
transverse field. 

a(e(lA) and can then be written: 

A ’ =  -r’/ J ’  
12 -(l/A’) exp ( -3A’Kb)+( l /A’ )+jKb 

F,(Kb,  A ’ ) = -  27 exp( -3A‘Ki.) + 2 Y ‘  
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and, again following [15], we get 

(Pf A -  PLdiI = -JyhIiFIi(Ky, A )  

( F , l ( K y ,  A )  is given in the appendix). 
The critical line is obtained by setting Fl( K’, A )  = Fll(Ky, A ) .  The A axis is intersec- 

ted at the ‘quantum’ fixed point (-Ky* = CO); in our calculation A * = 0.2, which agrees 
very well with the value found by Herrmann and Martin [18]. 

Not all the points on the critical line are actually fixed points of a completely 
specified RG procedure. For example, in the I D  Potts ferromagnet in a transverse field 
there is the ‘classical’ fixed point at A * = 0, K* = CO, in addition to the ‘quantum’ fixed 
point. The one-dimensional Potts antiferromagnet with r = 0 is disordered at zero 
temperature (equation ( 2 . 5 )  has no solution for z = 2), so there is not, in this case, a 
classical fixed point with A *  = 0. On the other hand, and similar to what was encoun- 
tered in the I D  Potts ferromagnet [15], we find a (probably) spurious solution A (  T )  # 0 
in a narrow temperature range around zero; only a free energy calculation would 
enable a clarification of this point, but this method is obviously not suitable for that. 

As discussed by Herrmann and Martin [ 181, the critical behaviour at the ‘quantum’ 
fixed point of this model is equivalent to that of the two-dimensional Potts model with 
ferromagnetic and antiferromagnetic interactions in the two directions of a square 
lattice. We have also calculated the exponent y,, defined by dA’/dAIK:=-,; A = A *  = 2’~. 
An estimate for the critical exponent v ofthe classical equivalent model is then obtained, 
v = l/yA = 2.8. The high value found for v within this approximation may in fact be 
indicative of the essential singularity discussed by Herrmann et al, which will probably 
show more clearly in a calculation involving bigger clusters. 

5. Conclusions 

In conclusion, once again MFRG has proved useful for the determination of critical 
temperatures, improving the mean-field estimates for the three-dimensional three-state 
Potts antiferromagnets and comparing well with other existing results for the square- 
lattice Potts model with ferromagnetic and antiferromagnetic interactions. This can 
be achieved, in the simplest version (when the comparison is made between one- and 
two-spin clusters), with a small amount of computational work compared to that 
usually involved in related finite-size or phenomenological scaling methods. As shown 
with other systems, the capability of the method to predict exponents is poor, although 
one expects a convergence towards better results for larger clusters. Within this 
approximation we could not expect to distinguish a low-temperature phase with 
algebraically decaying correlations; even so we were able to detect, in one case, an 
increase in the exponent v which can be indicative of the vicinity of an infinite-order 
phase transition (where v = CO). However, this only occurs at low temperature, where 
the method can be deficient. 

Extensions of this work to general q-state Potts antiferromagnets are presently 
being studied, as well as the consideration of different sorts of competing interactions. 
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The use of larger clusters would certainly be desirable for an improvement in the 
calculation of critical exponents. 
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Appendix 

The Hamiltonian for the isolated two-spin cluster is 

%I = - r ( $ l A +  $ 2 B )  - J y  c p!Ap:B 

and has eigenvalues (degeneracy g )  

g o =  1 

g1=2 

g2 = 2 

g3 = 2 

E o -  - - 1  ,JV(1-6A+8) 

E, = - 4Jv( 1 - 3A + 8) 
E2 = 3 J,,A 

E, = - fJ,( 1 - 3A - 8) 
E4=-fJv(1-6A-8)  g4= 1 

E5 = 0 g5= 1 

where 8 = (1 +36A2+4h)’I2, 8= (1 +9A2-2A)’/2. 
The corresponding eigenvectors (ql) can be obtained after some algebra. 
In order to calculate ( P i A  - P:B)ae,, , where 

2 1 1  = %‘I - - 3 , ~ ~ ~ ( p h  - piAI 
we use a perturbation expansion in powers of A l l ,  as developed in [15]. 

Defining 
g g, 

= c I((PIIp:B- p:Alp:>12 
r = l  s=l 

the expressions for the non-vanishing elements are 

4A2 
A -  

4 B 2  4 A2 
4 0 = 3  a A21 =i 1+2A2 

5 1  - ( 1 - 2 ~ ) ~ + 2 ( 1  + A ) ,  

4 (A‘)2 4 (SI)’ 2 
(1-2A)*+2(1+A)’ A53 = A 2 3 = 5  1+2(A’)’ 1+2(8‘)2 

where 

-1 -3A + 8 
2( 1 - 3h + 8) 

2( 1 - 3A - 8) 

-1 - 6 ~  + e  
i - 6 ~ + e  

-1-6,i-e 
1-6,i-e 

A =  B =  

B’= -1-3A-8 A’ = 
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